Google îl sărbătoreşte astăzi pe matematicianul elveţian Leonhard Euler

Google îl sărbătoreşte astăzi pe matematicianul elveţian Leonhard Euler
Google sărbătoreşte, luni, 306 ani de la naşterea matematicianului elveţian Leonhard Euler, care a avut o contribuţie fundamentală în analiza matematică, fiind cel care a introdus integralele care îi poartă numele şi cel care a creat teoria funcţiilor.

În acest sens, noul logo - parţial interactiv - include imaginile mai multor formule matematice atribuite lui Leonhard Euler. De asemenea, logoul, realizat în alb-negru, cuprinde cuvântul Google scris cu creionul pe o bucată de hârtie, cea de-a doua literă "o" fiind înlocuită cu un element interactiv, care poate fi mişcat de utilizatori.

Leonhard Euler s-a născut pe 15 aprilie 1707, la Basel (Elveția), fiind considerat unul dintre cei mai importanţi matematicieni din istorie şi cel mai mare matematician al secolului al XVIII-lea. El este şi matematicianul cu cea mai întinsă operă din istorie, potrivit unei analize făcute de profesorul român Ion Chiţescu, postată pe site-ul Facultăţii de Matematică şi Informatică din cadrul Universităţii Bucureşti.

Conform sursei citate, Leonhard Euler a fost fiul lui Paul Euler, un pastor luteran cu studii în teologie şi în matematică (a audiat cursurile lui Jacob Bernoulli, unul dintre cei mai faimoși matematicieni ai acelei perioade). De altfel, matematicianul Johann Bernoulli, fratele mai mic al lui Jakob Bernoulli, i-a influenţat în mod decisiv cariera lui Leonhard Euler.

În 1720, la vârsta de 13 ani, Leonhard Euler s-a înscris la Universitatea din Basel, cu scopul de a se pregăti pentru o carieră teologică şi filosofică. Însă, în timpul studenţiei sale, şi-a dat seama că vocaţia sa este matematica, fiind îndrumat de profesorul său Johann Bernoulli. În 1723 a absolvit Facultatea din Basel, obţinând titlul de master în filosofie. În teza de masterat, a comparat şi a pus în antiteză ideile filosofice ale lui René Descartes şi Isaac Newton. Mai târziu, în 1726, Euler şi-a încheiat studiile teologice, tot la Universitatea din Basel.

În 1727 i-a fost acordat marele premiu la un concurs al Academiei din Paris dedicat modalităţii optime de aranjare a catargelor pe un vapor. În cariera sa, Euler a obţinut de 12 ori premiul Academiei din Paris.

Tot în 1727, la vârsta de 20 de ani, Euler şi-a susţinut teza de doctorat, cu titlul "Despre acustică", pe baza căreia a solicitat un post de profesor de fizică la Universitatea din Basel, însă solicitarea i-a fost refuzată.

În aceeaşi perioadă, cei doi fii ai lui Johann Bernoulli, Daniel și Nicolas, își desfășurau activitatea la Academia Imperială de Științe din Sankt Petersburg, iar în 1726, la moartea lui Nicolas, Daniel a preluat catedra de matematică și fizică, lăsând liberă catedra de medicină. Euler a fost propus pentru acest post și s-a mutat în Sankt Petersburg în 1727. La scurt timp a trecut de la catedra de medicină la cea de matematică, fiind numit șeful Comisiei de matematică a Academiei.

La Sankt Petersburg, Euler a publicat lucrări științifice şi a continuat activitatea de cercetare matematică, colaborând cu Daniel Bernoulli.

Din cauza muncii extenuante, la 28 de ani, Euler a suferit o congestie cerebrală şi şi-a pierdut vederea la ochiul drept.

După moartea ţarului Petru cel Mare și a succesoarei acestuia, Ecaterina I, în contextul preluării puterii de către Petru al II-lea, Euler a fost nevoit să părăsească Rusia, iar în 1741 a acceptat propunerea lui Frederic cel Mare al Prusiei de a merge la Academia din Berlin. La Berlin, Euler a locuit timp de 25 de ani, perioadă în care a scris peste 380 de articole și 200 de scrisori pe teme științifice și a publicat două din cărțile sale de analiză matematică.

În 1766, Euler a părăsit Berlinul şi a revenit la Sankt Petersburg, unde a trăit timp de 17 ani, caracterizaţi de o productivitate extraordinară, dar şi de pierderea cumpletă a vederii. Datorită memoriei sale foarte bune, Euler a reuşit să îşi continue cariera ajutat de fiii săi.

Euler a lucrat în aproape toate ramurile matematicii, printre care geometrie, calcul infinitesimal, trigonometrie, algebră și teoria numerelor. În numeroasele sale cercetări, Euler a introdus și a popularizat convenții de notare. El a introdus noțiunea de funcție și a fost primul care a notat f(x) pentru aplicarea funcției f elementului x. De asemenea, el a introdus notația modernă pentru funcțiile trigonometrice, litera "e" pentru baza logaritmului natural (cunoscut în prezent drept "numărul lui Euler"), litera grecească ∑ (sigma) pentru sumă și litera "i" pentru unitatea imaginară, potrivit Wikipedia.

Dezvoltarea calculului infinitesimal a impulsionat cercetarea în matematică în secolul al XVIII-lea, iar matematicienii din familia Bernoulli, prieteni de familie ai lui Euler, au fost printre cei responsabili pentru progresul în acest domeniu. Datorită influenței lor, calculul infinitesimal a devenit obiectul de studiu principal al lui Euler. Astfel, el a rămas foarte cunoscut în analiza matematică pentru utilizarea frecventă a seriilor de puteri - exprimarea unor funcții cu ajutorul unor sume cu un număr infinit de termeni.

Euler a introdus utilizarea funcției exponențiale și a celei logaritmice în calculul analitic. El a descoperit noi moduri de a exprima diverse funcții logaritmice cu ajutorul seriilor de puteri și a definit cu succes logaritmii pentru numerele complexe, extinzând astfel domeniul de aplicare a logaritmilor.

Tot Euler este cel care a definit funcția exponențială pentru numerele complexe și a făcut legătura dintre aceasta și funcțiile trigonometrice, printr-o formulă. Un caz particular al acestei formule duce la "identitatea lui Euler".

Euler a elaborat teoria funcțiilor transcendentale superioare prin introducerea funcției gamma și a introdus o nouă metodă pentru rezolvarea ecuațiilor polinomiale de gradul IV. El a găsit, de asemenea, o modalitate de a calcula integralele cu limite complexe, prefigurând astfel dezvoltarea analizei complexe moderne, și a inventat calculul variațiilor, inclusiv cunoscuta ecuație Euler-Lagrange.

Euler a fost primul matematician care a utilizat metode analitice pentru a rezolva probleme de teorie a numerelor. În acest sens, el a unit două domenii diferite ale matematicii (teoria numerelor și analiza), introducând un nou domeniu de studiu: teoria analitică a numerelor. În acest nou domeniu, Euler a creat teoria seriilor hipergeometrice, teoria funcțiilor trigonometrice hiperbolice și teoria analitică a fracțiilor continue. De exemplu, el a demonstrat infinitatea numerelor prime, utilizând divergența unor serii armonice, și a folosit metode analitice pentru a obține o înțelegere a modului în care sunt distribuite numerele prime. Lucrările lui Euler în acest domeniu au permis elaborarea ulterioară a teoremei numerelor prime.

Euler a demonstrat "identitatea lui Newton", "mica teoremă a lui Fermat", "teorema celor două pătrate" a lui Fermat și "teorema celor patru pătrate" a lui Lagrange.

Unele dintre cele mai mari succese lui Euler se regăsesc în rezolvarea problemelor concrete, din lumea reală, prin metode analitice. Astfel, el a realizat numeroase aplicații folosind numerele Bernoulli, seriile Fourier, diagramele Venn, numerele Euler, constantele e și π, fracțiile continue și integralele.

A integrat calculul diferențial al lui Leibniz cu metoda fluxurilor a lui Newton și a dezvoltat noi metode pentru aplicarea mai ușoară a calculului diferențial în problemele de mecanică. El a făcut pași importanți în îmbunătățirea aproximării numerice a integralelor, realizând metoda cunoscută în prezent ca aproximările Euler.

Euler a demonstrat, simultan cu matematicianul scoțian Colin Maclaurin (dar independent de acesta), formula Euler-Maclaurin. De asemenea, el a introdus constanta Euler-Mascheroni.

În mecanica fluidelor, Euler a formulat sistemul de ecuații care descrie mișcarea unui fluid; împreună cu ecuația de continuitate, acest sistem este cunoscut în prezent sub numele de "ecuațiile lui Euler pentru fluidele ideale".

În afară de implementarea cu succes a metodelor sale de calcul analitic la problemele de mecanică newtoniană, Euler a aplicat aceste metode la problemele de astronomie. Lucrările sale în acest domeniu au fost recunoscute și prin numeroasele premii decernate de Academia de Științe din Paris de-a lungul carierei sale. Realizările sale includ determinarea cu mare precizie a orbitelor cometelor și ale altor corpuri cerești, precum și înțelegerea naturii cometelor.

Euler este cel care a ilustrat pentru prima oară (în 1768) raționamentele de tip silogistic cu ajutorul curbelor închise. Aceste scheme logice au rămas cunoscute sub numele de diagrame Euler.

În 1773, după o căsătorie care a durat 40 de ani, soţia sa, Katharina, a decedat. După trei ani, Euler s-a căsătorit cu sora Katharinei, Salome Abigail. Cu Katharina, Euler a avut 13 copii, dintre care au supravieţuit doar 3. Unul singur a devenit matematician.

Euler a decedat pe 18 septembrie 1783, la Sankt Petersburg, la vârsta de 76 de ani.

Google îşi schimbă logoul ocazional, pentru a serba un anumit eveniment major sau o personalitate care a schimbat lumea.

Loading...
Etichete
Comenteaza